Chapter 13 Limits and derivatives
Q1. The value
of the limit Limx→0 (cos x)cot2 x is
(a) 1
(b) e
(c) e1/2
(d) e-1/2
Q2. The value
of limit Limx→0 {sin (a + x) – sin (a – x)}/x is
(a) 0
(b) 1
(c) 2 cos a
(d) 2 sin a
Q3. Lim x→-1 [1
+ x + x² + ……….+ x10] is
(a) 0
(b) 1
(c) -1
(d) 2
Q4. The value of Limx→01 (1/x) × sin-1 {2x/(1 + x²) is
(a) 0
(b) 1
(c) 2
(d) -2
Q5. Limx→0 log(1
– x) is equals to
(a) 0
(b) 1
(c) 1/2
(d) None of these
Q6. Limx→0 {(ax –
bx)/ x} is equal to
(a) log a
(b) log b
(c) log (a/b)
(d) log (a×b)
Q7. The value
of limy→0 {(x + y) × sec (x + y) – x × sec x}/y is
(a) x × tan x × sec x
(b) x × tan x × sec x + x × sec x
(c) tan x × sec x + sec x
(d) x × tan x × sec x + sec x
Q8. Limy→∞ {(x
+ 6)/(x + 1)}(x+4) equals
(a) e
(b) e³
(c) e5
(d) e6
Q9. The
derivative of [1+(1/x)] /[1-(1/x)] is
(a) 1/(x-1)²
(b) -1/(x-1)²
(c) 2/(x-1)²
(d) -2/(x-1)²
Q10. The
expansion of log(1 – x) is
(a) x – x²/2 + x³/3 – ……..
(b) x + x²/2 + x³/3 + ……..
(c) -x + x²/2 – x³/3 + ……..
(d) -x – x²/2 – x³/3 – ……..
Q11. If f(x) =
x × sin(1/x), x ≠ 0, then Limx→0 f(x) is
(a) 1
(b) 0
(c) -1
(d) does not exist
Q12. The value
of Limn→∞ {1² + 2² + 3² + …… + n²}/n³ is
(a) 0
(b) 1
(c) -1
(d) n
Q13. The value
of Limn→∞ (sin x/x) is
(a) 0
(b) 1
(c) -1
(d) None of these
Q14. The value
of Limx→0 ax is
(a) 0
(b) 1
(c) 1/2
(d) 3/2
Q15. Let f(x)
= cos x, when x ≥ 0 and f(x) = x + k, when x < 0 Find the value of k given
that Limx→0 f(x) exists.
(a) 0
(b) 1
(c) -1
(d) None of these
Q16. The value
of Limx→0 (1/x) × sin-1 {2x/(1 + x²) is
(a) 0
(b) 1
(c) 2
(d) -2
Q17. Limx→0 sin
(ax)/bx is
(a) 0
(b) 1
(c) a/b
(d) b/a
Q18. The value
of the limit Limx→0 {log(1 + ax)}/x is
(a) 0
(b) 1
(c) a
(d) 1/a
Q19. If f(x) =
(x + 1)/x then df(x)/dx is
(a) 1/x
(b) -1/x
(c) -1/x²
(d) 1/x²
Q20. Limx→0 (ex² –
cos x)/x² is equals to
(a) 0
(b) 1
(c) 2/3
(d) 3/2
Answer key
Q’s |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Ans |
d |
c |
b |
c |
a |
c |
d |
c |
d |
d |
Q’s |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
Ans |
b |
a |
a |
b |
b |
c |
c |
c |
c |
d |
Comments
Post a Comment