Chapter-4 Principle of Mathematical induction

 

Q1. The sum of the series 1³ + 2³ + 3³ + ………..n³ is
(a) {(n + 1)/2}²
(b) {n/2}²
(c) n(n + 1)/2
(d) {n(n + 1)/2}²

Q2. If n is an odd positive integer, then a+ bis divisible by:
(a) a² + b²
(b) a + b
(c) a – b
(d) none of these

Q3. 1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ….. + 1/{n(n + 1)}
(a) n(n + 1)
(b) n/(n + 1)
(c) 2n/(n + 1)
(d) 3n/(n + 1)

Q4. The sum of the series 1² + 2² + 3² + ………..n² is
(a) n(n + 1)(2n + 1)
(b) n(n + 1)(2n + 1)/2
(c) n(n + 1)(2n + 1)/3
(d) n(n + 1)(2n + 1)/6

Q5. {1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. {1 – 1/ (n + 1)} =
(a) 1/(n + 1) for all n
N.
(b) 1/(n + 1) for all n
R
(c) n/(n + 1) for all n
N.
(d) n/(n + 1) for all n
R

Q6. For any natural number n, 7n – 2n is divisible by
(a) 3
(b) 4
(c) 5
(d) 7

Q7. 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + …….. + 1/{n(n + 1)(n + 2)} =
(a) {n(n + 3)}/{4(n + 1)(n + 2)}
(b) (n + 3)/{4(n + 1)(n + 2)}
(c) n/{4(n + 1)(n + 2)}
(d) None of these

Q8. The nth terms of the series 3 + 7 + 13 + 21 +………. is
(a) 4n – 1
(b) n² + n + 1
(c) none of these
(d) n + 2

Q9. n(n + 1)(n + 5) is a multiple of ____ for all n N
(a) 2
(b) 3
(c) 5
(d) 7

Q10. Find the number of shots arranged in a complete pyramid the base of which is an equilateral triangle, each side containing n shots.
(a) n(n+1)(n+2)/3
(b) n(n+1)(n+2)/6
(c) n(n+2)/6
(d) (n+1)(n+2)/6

Q11. For any natural number n, 7n – 2n is divisible by
(a) 3
(b) 4
(c) 5
(d) 7

Q12. (n² + n) is ____ for all n N.
(a) Even
(b) odd
(c) Either even or odd
(d) None of these

Q13. For all n N, 3×52n+1 + 23n+1 is divisible by
(a) 19
(b) 17
(c) 23
(d) 25

Q14. Find the number of shots arranged in a complete pyramid the base of which is an equilateral triangle, each side containing n shots.
(a) n(n+1)(n+2)/3
(b) n(n+1)(n+2)/6
(c) n(n+2)/6
(d) (n+1)(n+2)/6

Q15. {1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. {1 – 1/(n + 1)} =
(a) 1/(n + 1) for all n
N.
(b) 1/(n + 1) for all n
R
(c) n/(n + 1) for all n
N.
(d) n/(n + 1) for all n
R

Q16.(1 + x)n ≥ ____ for all n N,where x > -1
(a) 1 + nx
(b) 1 – nx
(c) 1 + nx/2
(d) 1 – nx/2

Q17. 102n-1 + 1 is divisible by ____ for all N N
(a) 9
(b) 10
(c) 11
(d) 13

Q18. For all nN, 72n − 48n−1 is divisible by:
(a) 25
(b) 2304
(c) 1234
(d) 26

Q19. The sum of the series 1² + 2² + 3² + ………..n² is
(a) n(n + 1)(2n + 1)
(b) n(n + 1)(2n + 1)/2
(c) n(n + 1)(2n + 1)/3
(d) n(n + 1)(2n + 1)/6

Q20. {1/(3 ∙ 5)} + {1/(5 ∙ 7)} + {1/(7 ∙ 9)} + ……. + 1/{(2n + 1)(2n + 3)} =
(a) n/(2n + 3)
(b) n/{2(2n + 3)}
(c) n/{3(2n + 3)}
(d) n/{4(2n + 3)

Answer key

Q’s

1

2

3

4

5

6

7

8

9

10

Ans

d

b

b

d

a

c

a

b

b

b

Q’s

11

12

13

14

15

16

17

18

19

20

Ans

c

a

b

b

a

a

c

b

d

c


Comments