Chapter-4 Principle of Mathematical induction
Q1. The sum of
the series 1³ + 2³ + 3³ + ………..n³ is
(a) {(n + 1)/2}²
(b) {n/2}²
(c) n(n + 1)/2
(d) {n(n + 1)/2}²
Q2. If n is an
odd positive integer, then an + bn is divisible
by:
(a) a² + b²
(b) a + b
(c) a – b
(d) none of these
Q3. 1/(1 ∙ 2)
+ 1/(2 ∙ 3) + 1/(3 ∙ 4) + ….. + 1/{n(n + 1)}
(a) n(n + 1)
(b) n/(n + 1)
(c) 2n/(n + 1)
(d) 3n/(n + 1)
Q4. The sum of
the series 1² + 2² + 3² + ………..n² is
(a) n(n + 1)(2n + 1)
(b) n(n + 1)(2n + 1)/2
(c) n(n + 1)(2n + 1)/3
(d) n(n + 1)(2n + 1)/6
Q5. {1 –
(1/2)}{1 – (1/3)}{1 – (1/4)} ……. {1 – 1/ (n + 1)} =
(a) 1/(n + 1) for all n ∈ N.
(b) 1/(n + 1) for all n ∈ R
(c) n/(n + 1) for all n ∈ N.
(d) n/(n + 1) for all n ∈ R
Q6. For any
natural number n, 7n – 2n is divisible by
(a) 3
(b) 4
(c) 5
(d) 7
Q7. 1/(1 ∙ 2 ∙
3) + 1/(2 ∙ 3 ∙ 4) + …….. + 1/{n(n + 1)(n + 2)} =
(a) {n(n + 3)}/{4(n + 1)(n + 2)}
(b) (n + 3)/{4(n + 1)(n + 2)}
(c) n/{4(n + 1)(n + 2)}
(d) None of these
Q8. The nth
terms of the series 3 + 7 + 13 + 21 +………. is
(a) 4n – 1
(b) n² + n + 1
(c) none of these
(d) n + 2
Q9. n(n + 1)(n
+ 5) is a multiple of ____ for all n ∈ N
(a) 2
(b) 3
(c) 5
(d) 7
Q10. Find the
number of shots arranged in a complete pyramid the base of which is an
equilateral triangle, each side containing n shots.
(a) n(n+1)(n+2)/3
(b) n(n+1)(n+2)/6
(c) n(n+2)/6
(d) (n+1)(n+2)/6
Q11. For any
natural number n, 7n – 2n is divisible by
(a) 3
(b) 4
(c) 5
(d) 7
Q12. (n² + n)
is ____ for all n ∈ N.
(a) Even
(b) odd
(c) Either even or odd
(d) None of these
Q13. For all n
∈ N, 3×52n+1 + 23n+1 is divisible
by
(a) 19
(b) 17
(c) 23
(d) 25
Q14. Find the
number of shots arranged in a complete pyramid the base of which is an
equilateral triangle, each side containing n shots.
(a) n(n+1)(n+2)/3
(b) n(n+1)(n+2)/6
(c) n(n+2)/6
(d) (n+1)(n+2)/6
Q15. {1 –
(1/2)}{1 – (1/3)}{1 – (1/4)} ……. {1 – 1/(n + 1)} =
(a) 1/(n + 1) for all n ∈ N.
(b) 1/(n + 1) for all n ∈ R
(c) n/(n + 1) for all n ∈ N.
(d) n/(n + 1) for all n ∈ R
Q16.(1 + x)n ≥
____ for all n ∈ N,where x > -1
(a) 1 + nx
(b) 1 – nx
(c) 1 + nx/2
(d) 1 – nx/2
Q17. 102n-1 +
1 is divisible by ____ for all N ∈ N
(a) 9
(b) 10
(c) 11
(d) 13
Q18. For all n∈N, 72n −
48n−1 is divisible by:
(a) 25
(b) 2304
(c) 1234
(d) 26
Q19. The sum
of the series 1² + 2² + 3² + ………..n² is
(a) n(n + 1)(2n + 1)
(b) n(n + 1)(2n + 1)/2
(c) n(n + 1)(2n + 1)/3
(d) n(n + 1)(2n + 1)/6
Q20. {1/(3 ∙
5)} + {1/(5 ∙ 7)} + {1/(7 ∙ 9)} + ……. + 1/{(2n + 1)(2n + 3)} =
(a) n/(2n + 3)
(b) n/{2(2n + 3)}
(c) n/{3(2n + 3)}
(d) n/{4(2n + 3)
Answer key
Q’s |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Ans |
d |
b |
b |
d |
a |
c |
a |
b |
b |
b |
Q’s |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
Ans |
c |
a |
b |
b |
a |
a |
c |
b |
d |
c |
Comments
Post a Comment