Chapter-5 Complex Numbers and Quadratic Equations mcqs
Q1. The value
of √(-16) is
(a) -4i
(b) 4i
(c) -2i
(d) 2i
Q2. The value
of √(-144) is
(a) 12i
(b) -12i
(c) ±12i
(d) None of these
Q3: The value
of √(-25) + 3√(-4) + 2√(-9) is
(a) 13i
(b) -13i
(c) 17i
(d) -17i
Q4. if z lies
on |z| = 1, then 2/z lies on
(a) a circle
(b) an ellipse
(c) a straight line
(d) a parabola
Q5. If ω is an
imaginary cube root of unity, then (1 + ω – ω²)7 equals
(a) 128 ω
(b) -128 ω
(c) 128 ω²
(d) -128 ω²
Q6. The least
value of n for which {(1 + i)/(1 – i)}n is real, is
(a) 1
(b) 2
(c) 3
(d) 4
Q7. Let z be a
complex number such that |z| = 4 and arg(z) = 5π/6, then z =
(a) -2√3 + 2i
(b) 2√3 + 2i
(c) 2√3 – 2i
(d) -√3 + i
Q8: The value
of i-999 is
(a) 1
(b) -1
(c) i
(d) -i
Q9. Let z1 and
z2 be two roots of the equation z² + az + b = 0, z being
complex. Further assume that the origin, z1 and z1 form
an equilateral triangle. Then
(a) a² = b
(b) a² = 2b
(c) a² = 3b
(d) a² = 4b
Q10: The
complex numbers sin x + i cos 2x are conjugate to each other for
(a) x = nπ
(b) x = 0
(c) x = (n + 1/2) π
(d) no value of x
Q11. The curve
represented by Im(z²) = k, where k is a non-zero real number, is
(a) a pair of striaght line
(b) an ellipse
(c) a parabola
(d) a hyperbola
Q12. The value
of x and y if (3y – 2) + i(7 – 2x) = 0
(a) x = 7/2, y = 2/3
(b) x = 2/7, y = 2/3
(c) x = 7/2, y = 3/2
(d) x = 2/7, y = 3/2
Q13. Find real
θ such that (3 + 2i × sin θ)/(1 – 2i × sin θ) is imaginary
(a) θ = nπ ± π/2 where n is an integer
(b) θ = nπ ± π/3 where n is an integer
(c) θ = nπ ± π/4 where n is an integer
(d) None of these
Q14. If {(1 +
i)/(1 – i)}n = 1 then the least value of n is
(a) 1
(b) 2
(c) 3
(d) 4
Q15. If arg
(z) < 0, then arg (-z) – arg (z) =
(a) π
(b) -π
(c) -π/2
(d) π/2
Q16. if x +
1/x = 1 find the value of x2000 + 1/x2000 is
(a) 0
(b) 1
(c) -1
(d) None of these
Q17. The value
of √(-144) is
(a) 12i
(b) -12i
(c) ±12i
(d) None of these
Q18. If the
cube roots of unity are 1, ω, ω², then the roots of the equation (x – 1)³ + 8 =
0 are
(a) -1, -1 + 2ω, – 1 – 2ω²
(b) – 1, -1, – 1
(c) – 1, 1 – 2ω, 1 – 2ω²
(d) – 1, 1 + 2ω, 1 + 2ω²
Q19. (1 – w +
w²)×(1 – w² + w4)×(1 – w4 + w8) × ……………
to 2n factors is equal to
(a) 2n
(b) 22n
(c) 23n
(d) 24n
Q20. The
modulus of 5 + 4i is
(a) 41
(b) -41
(c) √41
(d) -√41
Answer key
Q’s |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Ans |
b |
a |
c |
a |
d |
d |
a |
c |
c |
d |
Q’s |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
Ans |
d |
a |
b |
d |
a |
c |
a |
c |
b |
c |
Comments
Post a Comment