Chapter-6 Linear Inequalities mcqs
Q1. Sum of two
rational numbers is ______ number.
(a) rational
(b) irrational
(c) Integer
(d) Both 1, 2 and 3
Q2. If x² = -4
then the value of x is
(a) (-2, 2)
(b) (-2, ∞)
(c) (2, ∞)
(d) No solution
Q3. Solve: (x
+ 1)² + (x² + 3x + 2)² = 0
(a) x = -1, -2
(b) x = -1
(c) x = -2
(d) None of these
Q4. If (x +
3)/(x – 2) > 1/2 then x lies in the interval
(a) (-8, ∞)
(b) (8, ∞)
(c) (∞, -8)
(d) (∞, 8)
Q5.The region
of the XOY-plane represented by the inequalities x ≥ 6, y ≥ 2, 2x + y ≤ 10 is
(a) unbounded
(b) a polygon
(c) none of these
(d) exterior of a triangle
Q6.The
interval in which f(x) = (x – 1) × (x – 2) × (x – 3) is negative is
(a) x > 2
(b) 2 < x and x < 1
(c) 2 < x < 1 and x < 3
(d) 2 < x < 3 and x < 1
Q7. If -2 <
2x – 1 < 2 then the value of x lies in the interval
(a) (1/2, 3/2)
(b) (-1/2, 3/2)
(c) (3/2, 1/2)
(d) (3/2, -1/2)
Q8. The
solution of the inequality |x – 1| < 2 is
(a) (1, ∞)
(b) (-1, 3)
(c) (1, -3)
(d) (∞, 1)
Q9. If | x −
1| > 5, then
(a) x∈(−∞, −4)∪(6, ∞]
(b) x∈[6, ∞)
(c) x∈(6, ∞)
(d) x∈(−∞, −4)∪(6, ∞)
Q10. The
solution of |2/(x – 4)| > 1 where x ≠ 4 is
(a) (2, 6)
(b) (2, 4) ∪ (4, 6)
(c) (2, 4) ∪ (4, ∞)
(d) (-∞, 4) ∪ (4, 6)
Q11. If (|x| –
1)/(|x| – 2) ≥ 0, x ∈ R, x ± 2 then the interval of x is
(a) (-∞, -2) ∪ [-1, 1]
(b) [-1, 1] ∪ (2, ∞)
(c) (-∞, -2) ∪ (2, ∞)
(d) (-∞, -2) ∪ [-1, 1] ∪ (2, ∞)
Q12.The
solution of the -12 < (4 -3x)/(-5) < 2 is
(a) 56/3 < x < 14/3
(b) -56/3 < x < -14/3
(c) 56/3 < x < -14/3
(d) -56/3 < x < 14/3
Q13. If x² =
-4 then the value of x is
(a) (-2, 2)
(b) (-2, ∞)
(c) (2, ∞)
(d) No solution
Q14.Solve: |x
– 3| < 5
(a) (2, 8)
(b) (-2, 8)
(c) (8, 2)
(d) (8, -2)
Q15.The graph
of the in equations x ≥ 0, y ≥ 0, 3x + 4y ≤ 12 is
(a) none of these
(b) interior of a triangle including the points on the sides
(c) in the 2nd quadrant
(d) exterior of a triangle
Q16. If |x|
< 5 then the value of x lies in the interval
(a) (-∞, -5)
(b) (∞, 5)
(c) (-5, ∞)
(d) (-5, 5)
Q17. Solve:
f(x) = {(x – 1)×(2 – x)}/(x – 3) ≥ 0
(a) (-∞, 1] ∪ (2, ∞)
(b) (-∞, 1] ∪ (2, 3)
(c) (-∞, 1] ∪ (3, ∞)
(d) None of these
Q18. If x² = 4
then the value of x is
(a) -2
(b) 2
(c) -2, 2
(d) None of these
Q19. The
solution of the 15 < 3(x – 2)/5 < 0 is
(a) 27 < x < 2
(b) 27 < x < -2
(c) -27 < x < 2
(d) -27 < x < -2
Q20. Solve: 1
≤ |x – 1| ≤ 3
(a) [-2, 0]
(b) [2, 4]
(c) [-2, 0] ∪ [2, 4]
(d) None of these
Answer key
Q’s |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Ans |
a |
d |
b |
a |
c |
d |
b |
b |
d |
b |
Q’s |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
Ans |
d |
d |
d |
b |
b |
d |
b |
c |
a |
c |
Comments
Post a Comment