Chapter-6 Linear Inequalities mcqs

 

Q1. Sum of two rational numbers is ______ number.
(a) rational
(b) irrational
(c) Integer
(d) Both 1, 2 and 3

Q2. If x² = -4 then the value of x is
(a) (-2, 2)
(b) (-2, ∞)
(c) (2, ∞)
(d) No solution

Q3. Solve: (x + 1)² + (x² + 3x + 2)² = 0
(a) x = -1, -2
(b) x = -1
(c) x = -2
(d) None of these

Q4. If (x + 3)/(x – 2) > 1/2 then x lies in the interval
(a) (-8, ∞)
(b) (8, ∞)
(c) (∞, -8)
(d) (∞, 8)

Q5.The region of the XOY-plane represented by the inequalities x ≥ 6, y ≥ 2, 2x + y ≤ 10 is
(a) unbounded
(b) a polygon
(c) none of these
(d) exterior of a triangle

Q6.The interval in which f(x) = (x – 1) × (x – 2) × (x – 3) is negative is
(a) x > 2
(b) 2 < x and x < 1
(c) 2 < x < 1 and x < 3
(d) 2 < x < 3 and x < 1

Q7. If -2 < 2x – 1 < 2 then the value of x lies in the interval
(a) (1/2, 3/2)
(b) (-1/2, 3/2)
(c) (3/2, 1/2)
(d) (3/2, -1/2)

Q8. The solution of the inequality |x – 1| < 2 is
(a) (1, ∞)
(b) (-1, 3)
(c) (1, -3)
(d) (∞, 1)

Q9. If | x − 1| > 5, then
(a) x
(−∞, −4)(6, ∞]
(b) x
[6, ∞)
(c) x
(6, ∞)
(d) x
(−∞, −4)(6, ∞)

Q10. The solution of |2/(x – 4)| > 1 where x ≠ 4 is
(a) (2, 6)
(b) (2, 4)
(4, 6)
(c) (2, 4)
(4, ∞)
(d) (-∞, 4)
(4, 6)

Q11. If (|x| – 1)/(|x| – 2) ≥ 0, x R, x ± 2 then the interval of x is
(a) (-∞, -2) [-1, 1]
(b) [-1, 1]
(2, ∞)
(c) (-∞, -2)
(2, ∞)
(d) (-∞, -2)
[-1, 1] (2, ∞)

Q12.The solution of the -12 < (4 -3x)/(-5) < 2 is
(a) 56/3 < x < 14/3
(b) -56/3 < x < -14/3
(c) 56/3 < x < -14/3
(d) -56/3 < x < 14/3

Q13. If x² = -4 then the value of x is
(a) (-2, 2)
(b) (-2, ∞)
(c) (2, ∞)
(d) No solution

Q14.Solve: |x – 3| < 5
(a) (2, 8)
(b) (-2, 8)
(c) (8, 2)
(d) (8, -2)

Q15.The graph of the in equations x ≥ 0, y ≥ 0, 3x + 4y ≤ 12 is
(a) none of these
(b) interior of a triangle including the points on the sides
(c) in the 2nd quadrant
(d) exterior of a triangle

Q16. If |x| < 5 then the value of x lies in the interval
(a) (-∞, -5)
(b) (∞, 5)
(c) (-5, ∞)
(d) (-5, 5)

Q17. Solve: f(x) = {(x – 1)×(2 – x)}/(x – 3) ≥ 0
(a) (-∞, 1] (2, ∞)
(b) (-∞, 1]
(2, 3)
(c) (-∞, 1]
(3, ∞)
(d) None of these

Q18. If x² = 4 then the value of x is
(a) -2
(b) 2
(c) -2, 2
(d) None of these

Q19. The solution of the 15 < 3(x – 2)/5 < 0 is
(a) 27 < x < 2
(b) 27 < x < -2
(c) -27 < x < 2
(d) -27 < x < -2

Q20. Solve: 1 ≤ |x – 1| ≤ 3
(a) [-2, 0]
(b) [2, 4]
(c) [-2, 0]
[2, 4]
(d) None of these

Answer key

Q’s

1

2

3

4

5

6

7

8

9

10

Ans

a

d

b

a

c

d

b

b

d

b

Q’s

11

12

13

14

15

16

17

18

19

20

Ans

d

d

d

b

b

d

b

c

a

c


Comments